Machining
The usual rules of good machining practice apply to the machining of Aristech Acrylics® Acrylic Sheet. An experienced machinist will have no difficulty handling the materials as its working properties are similar to those of brass, copper, and fine woods.

Tools should be held firmly to prevent chattering. Standard metal or wood working equipment can be used: such as, milling machines, drill presses, lathes, planers, and shapers. In general, machine tools should be operated at high speeds with slow feed rates, Aristech Acrylics® Acrylic Sheet being a thermoplastic material, softens when heated to its forming temperature of 320 to 380°F (160 to 195°C). The frictional heat generated by machining tends to soften the acrylic in the immediate vicinity of the cut and can cause gumming and sticking of the tool, unless proper speed, feed rate, and cutters are used. Properly machined surfaces will have an even, semi-matte surface that can be brought to high polish by sanding and buffing.

If tools are sharp and properly ground, coolants are seldom required for machining. They may be desirable for an unusually smooth finish or for deep cuts. If coolants are employed, only detergent in water or 10% soluble oil in water should be used.

Routing and Shaping
Woodworking shapers and overhead, or portable routers are used in edge finishing operations and for cutting flat thermoformed parts. For edging small parts, the table router is convenient. (see Figure 1.) A portable router is useful when the part is too large or awkward to bring to the machine. (See Figure 2.)

These machines should have a minimum no-load spindle speed of 10,000 rpm. Higher speeds are desirable and should be used if they are available. Two or three flute cutters, smaller than 1.5” (38 mm) in diameter, running at high speeds, produce the smoothest cuts. At slower spindle speeds, the cutter should have more flutes, or may be larger in diameter to produce the necessary surface speeds. The cutter should be kept sharp and should have a back clearance of 10° and a positive rake angle up to 15°.

Drilling
When drilling Aristech Acrylics® Acrylic Sheet, best results are obtained when using standard twist drills which have been modified as follows:

1. High speed steel drills should be selected, having slow spirals and wide polished flutes.
2. Drills should first be ground to a tip angle of 60° to 90°.
3. Modify the standard twist drill by dubbing-off the cutting edge to zero rake angle.

Aristech Acrylics® Acrylic Sheet may be drilled using any of the conventional tools: portable electric drills, flexible shafts, drill presses or lathes. In general, drills should rotate at high speed and feed should be slow but steady. Use the highest available speed with a drill press, usually 5,000 rpm. An exception to this rule should be made when drilling large holes where the drill speed should be reduced to 1,000 rpm. The drill should always run true, since wobble will affect the finish of the hole.

When drilling holes which penetrate a second surface, it is desirable to back up the surface with wood and slow the feed as the drill point breaks through. For accuracy and safety, the acrylic should be clamped during drilling.

Cutting
As a general rule, a power saw is the best method of cutting Aristech Acrylics® Acrylic Sheet. It is sometimes advantageous to cut thin material at an elevated temperature with rule and blanking dies. Cold punching and/or shearing should not be used since these methods will fracture the material.

The type of equipment selected should be based on the work to be done. Circular saws are preferred for straight cutting. Jig saws and saber saws are suggested for cutting small radii curves and thin materials. Band saws are suggested for large radii curves and for straight cuts in thick acrylic. Routers and wood working shapers can be used for trimming the edges of formed parts.
Tempered alloy steel saw blades are the least expensive to buy, give reasonable service, and are discarded when worn out. Carbide tipped blades are more expensive, give longer service, and can be resharpened. The following table can be used as a guide in selecting the proper circular saw blade:

<table>
<thead>
<tr>
<th>THICKNESS OF ACRYLIC SHEET</th>
<th>BLADE THICKNESS</th>
<th>TEETH PER INCH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inches (mm)</td>
<td>mm (mm)</td>
<td></td>
</tr>
<tr>
<td>.080 - .100 (2.0 - 2.5)</td>
<td>1/16 - 3/32 (1.6 - 2.4)</td>
<td>8 - 14 (3 - 6)</td>
</tr>
<tr>
<td>.100 - .167 (2.5 - 4.7)</td>
<td>3/32 - 1/8 (2.4 - 3.2)</td>
<td>0 - 8 (2 - 3)</td>
</tr>
<tr>
<td>.167 - .472 (4.7 - 12.0)</td>
<td>3/32 - 1/8 (2.4 - 3.2)</td>
<td>5 - 6 (2 - 3)</td>
</tr>
</tbody>
</table>

Circular Saws Should:
1. Be run at 8,000-12,000 RPM.
2. Be hollow ground to aid cooling.
3. Be slotted to prevent heat warping the blade.
4. Have teeth with a uniform rake angle of 0° - 10°.
5. Have a slight set to give clearance of .010" to .015" (.254 mm to .381 mm) and
6. Have teeth of uniform height.

An 8" (20.3 cm) diameter blade is used for light work and a 12" (30.5 cm) blade for heavy work. A two horsepower motor is suggested for driving these blades.

Masking tape applied over the area to be cut will reduce the tendency to chip during cutting. Acetone, toluene, or methylene chloride can be used to clean blades. Tallow or bar soap applied to the blade, helps to prevent gum build-up on the blade when cutting sheet masked with adhesive backed paper.

Traveling saws cutting at 10 to 25 feet (3 to 7.6 meters) per minute are recommended for making straight cuts longer than 3 feet (91 cm) and for cutting sheets when it would be undesirable to slide them across the saw table.

An 8" (20.3 cm) diameter blade is used for light work and a 12" (30.5 cm) blade for heavy work. A two horsepower motor is suggested for driving these blades.

Masking tape applied over the area to be cut will reduce the tendency to chip during cutting. Acetone, toluene, or methylene chloride can be used to clean blades. Tallow or bar soap applied to the blade, helps to prevent gum build-up on the blade when cutting sheet masked with adhesive backed paper.

Variable speed band saws, which can run at 5,000 feet (1524 m) per minute and have a 28" to 36" (71 to 91 cm) throat, are best suited for production work. Metal cutting blades are the best type for cutting Aristech Acrylic Sheet. The following table can serve as a guide for selection of a blade:

<table>
<thead>
<tr>
<th>MINIMUM RADIUS TO BE CUT</th>
<th>BLADE WIDTH</th>
<th>BLADE THICKNESS</th>
<th>TEETH PER INCH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inches (mm)</td>
<td>Inches (mm)</td>
<td>mm (mm)</td>
<td></td>
</tr>
<tr>
<td>1/2 (12.7)</td>
<td>3/16 (4.7)</td>
<td>0.028 (.71)</td>
<td>7 (3)</td>
</tr>
<tr>
<td>3/4 (19)</td>
<td>1/4 (6.3)</td>
<td>0.028 (.71)</td>
<td>7 (3)</td>
</tr>
<tr>
<td>1-1/2 (38)</td>
<td>3/8 (9.5)</td>
<td>0.028 (.71)</td>
<td>6 (3)</td>
</tr>
<tr>
<td>2-1/4 (57)</td>
<td>1/2 (12.7)</td>
<td>0.032 (.81)</td>
<td>5 (2)</td>
</tr>
<tr>
<td>3 (76)</td>
<td>5/8 (15.9)</td>
<td>0.032 (.81)</td>
<td>5 (2)</td>
</tr>
<tr>
<td>4-1/2 (114)</td>
<td>3/4 (19)</td>
<td>0.032 (.81)</td>
<td>4 (1.5)</td>
</tr>
<tr>
<td>8 (203)</td>
<td>1 25/44 (63.1)</td>
<td>0.035 (.88)</td>
<td>4 (1.5)</td>
</tr>
<tr>
<td>12 (305)</td>
<td>1-1/4 (31.1)</td>
<td>0.035 (.88)</td>
<td>3 (1.5)</td>
</tr>
<tr>
<td>20 (508)</td>
<td>1-1/2 (38.1)</td>
<td>0.035 (.88)</td>
<td>3 (1.5)</td>
</tr>
</tbody>
</table>

The blade speed should be approximately 4,500 RPM for Aristech Acrylics® Acrylic Sheet thicknesses from .125" to .375" (3.2 to 9.5 mm) thick. Fine teeth with no set will produce a smooth cut if fed slowly. Sheets should be fed continuously and with even pressure to prevent the blade from binding and breaking. The blade should enter and leave the work slowly to prevent chipping. Should a burr form on the cut edge due to overheating, it can be removed with a scraper or other straight edged tool. This is particularly important if the sheet is to be silk screened.
Finishing

The original high-gloss surface of Aristech Acrylics® Acrylic Sheet can usually be restored by a series of finishing operations. Finishing often involves an initial sanding operation, followed by buffing, then finally a polishing operation. During all of these operations, heat should be avoided. The plastic should be kept in constant motion with a minimum of pressure against the finishing wheels. Air cooling devices can be used to reduce frictional heat.

Sanding

Minor and shallow scratches on a clean Aristech Acrylics® Acrylic Sheet surface can be filled with a paste wax to improve the appearance. Hard automobile paste wax should be used, applied in a light even film with a soft cloth. The surface should then be polished to a high gloss with a clean, dry, cotton flannel cloth. Hard or rough textured cloth such as cheesecloth and muslin should not be used. Deeper, yet light, scratches may be removed or reduced by hand polishing, using a soft cloth and a rubbing compound (see source list). Do not “sand” acrylic unless surface blemishes are too deep to remove by light buffing. When it is necessary, usually 320-A wet-or-dry paper is as coarse as will be required and may be fol-lowed by a 400-A or finer paper. Soak the sandpaper in water for a few minutes before using and use plenty of water while sanding. Sanding of large areas should not be attempted unless power buffing equipment is available. Final sanding should be in one direction only to prevent distortions and/or “bulls eyes.”

Machine sanding can be done with belt, disc, vibrator or drum sanders. Large optical grade jobs require expensive, precision grinding equipment. In all cases, when sanding acrylics, keep the tool, or the work, moving and use water freely.

Buffing and Polishing

An abrasive wheel may be used first, which consists of wheel buffs made of stitched cotton or flannel, and an abrasive compound of very fine alumina or similar abrasive combined with tallow wax binders. The abrasive wheel should run at about 1,800 surface feet (548 m) per minute.

After reducing most of the scratches on the abrasive wheel, a wheel buff to which only tallow has been applied may be used to remove any remaining imperfections. Speed of the buff should be between 1,800 and 2,200 surface feet (548 and 671 m) per minute.

Next, the acrylic part is given a high polish on a finish wheel on which no abrasive or tallow is used. As an alternate method, a coat of wax can be applied by hand.

FIGURE 8 - Final Sanding
(Use back and forth motion and liberal amounts of water)

FIGURE 9 - Buffing Aristech Acrylics® Sheet on Power Driven Buffer

The finish wheel should be very loose and made of imitation chamois or flannel 10” to 12” (25.4 to 30.5 cm) in diameter, running at a speed of 2,000 to 2,400 surface feet (610 to 732 m) per minute. This is the recommended procedure for finishing edges.

Flame Polishing

Edges and inaccessible areas can be polished with a hydrogen-oxygen flame. However, flame polishing cannot be fully recommended because it can cause “crazing” which may not show up for several weeks. The tendency toward crazing can be substantially reduced if you have a good, clean saw-cut to start with, if the saw-cut has been properly wet-sanded or jointed, and if the flame is applied correctly.

The risk of crazing can also be reduced by annealing the pieces in an oven for approximately 2 to 4 hours at a temperature of 170 to 180°F (77 to 82°C). Use a welding torch with a No. 4 or No. 5 tip. Set the hydrogen pressure at 5 psi (.35 kg/cm2). Ignite the hydrogen first, then turn on the oxygen and adjust the flame.

The flame should be bluish, nearly invisible, approximately 4” (10 cm) long, and narrow. Hold the torch so that the tip of the flame touches the edge of the Aristech Acrylics® Acrylic Sheet. (See Figure 10) Move the torch along the edge at a speed of approximately 3 to 4” (7 to 10 cm) per second.

Overheating and bubbling may occur if the flame is moved too slowly. If the first pass does not produce a completely polished edge, allow the piece to cool; a second pass will often improve the surface finish.

FIGURE 10 — Flame Polishing Edge of Fabricated Part
CEMENTING

Strong transparent joints can be obtained in bonding actions of Aristech Acrylics® Acrylic Sheet together, by giving careful attention to preparation of the mating surfaces, proper choice of cement and following correct cementing techniques.

Prevention of Internal Stresses

Heat generated by machining operations, and/or thermoforming at reduced temperatures, will often induce internal stresses which make the material susceptible to crazing after contact with solvents and certain cements. Such stresses can be avoided by the proper choice of thermoforming or machining conditions, or can be relieved by heat treating. Refer to the Annealing Section in Technical Bulletin 135 for proper heat treating conditions.

Joint Preparation

Surfaces to be jointed should be clean and fit together with uniform contact throughout the joint. In order to obtain close fitting edges, which is especially important, it may be desirable to accurately machine the mating surfaces.

Edges to be cemented should never be polished, as this tends to round the corners and decrease the contact area in the joint. There are several types of joints that may be used (see Figure 11) the selection of which will usually depend upon the end use application.

For the best strength in a cemented joint, the contact area should be as large as possible. Where two curved surfaces are to be joined, each should have the same radius to provide uniform contact over the entire joint area.

Safety Precautions

Most solvents are highly flammable, toxic, and may be irritating to the skin and eyes. As a safety measure, cementing operations should be carried out in a well ventilated area away from open flame. Eye protection and respiratory items should be afforded. See section on Material Safety Data Sheets for more information.

Types of Cement

Sections of Aristech Acrylics® GPA, GPM, IGP or IMA can be bonded together with one of three general types of cement commercially available—the solvent type, the monomer-polymer-solvent type or the monomer-polymer-catalyst type.

1. Solvent Type Cements

Solvent-type cements are the easiest and most convenient type to use. The solvent cements soften the mating surfaces so that complete fusion can be achieved at the interface of the joints which then harden into a transparent bond by diffusion and by evaporation. Ordinarily, the joints require no post-treatment.

Several types of satisfactory solvent cements are Weld-On 3, Weld-On 4 and Methylene Chloride. Acetone, Glacial Acetic Acid, and Chloroform are used, but are not recommended because their strong solvent action on acrylcs can cause crazing. Solvent cements allow rapid assembly, yield medium strength joints and have only fair to poor outdoor weathering resistance.

2. Monomer-Polymer-Solvent Type Cements

These types of cements usually consist of methyl methacrylate monomer, methyl methacrylate polymer and assorted solvents. M-P-S type cements are available Weld-On 16 and Weld-On 1802. M-P-S cements do not allow rapid assemblies. Usually 15 to 30 minutes after cement is applied, part can be handled very carefully. High to medium strength joints are obtained which have good to fair weathering resistance.

3. Monomer-Polymer-Catalyst Type Cements

These type cements consist of methyl methacrylate monomer, Methyl Methacrylate Polymer (Part A) and a catalyst (Part B). M-P-C cements available are Weld-On 10, Weld-On 28, and Weld-On 40. These type cements yield excellent bond strengths, and weathering resistance. Assembly times are slow.

Aristech Acrylics® I-300, Acrysteel M, Altair Plus, Quarite and Quarite Plus, Quarite Select and Quarite Plus Select can only be joined together with the monomer-polymer solvent type or the monomer-polymer-catalyst type, since these products are highly solvent resistant partially crosslinked continuous cast acrylic sheet.

FIGURE 11 - Joint Selection
CEMENTING (Cont.)
Cementing Techniques
Solvent cements can be applied to parts fabricated from Aristech Acrylics® Acrylic Sheet GPA, GPM, IGP or IMA by a soak, dip, syringe or a brush method. The best method depends on type of joint to be mated, physical configurations of parts, personal preference, etc. Temperature and humidity can affect the quality of cemented joints: Aristech Acrylics® Acrylic Sheet should not be cemented at temperatures below 65 °F (18 °C), over 95 °F (35 °C), or when the relative humidity is over 60 percent. Excessive moisture can cause cloudy joints which are usually weaker than normal.

1. The Soak Method
This method can be used with the solvent-type cements. Pieces of acrylic to be bonded are actually immersed in the solvent cement. The immersed section should be masked to prevent areas adjacent to the joint from being etched by the solvent cement. A cellophane adhesive tape or any other strippable coating through which the solvent cannot penetrate may be used as masking. In cementing curved or complicated sections, the area can be masked by a coating of a thick gelatin solution made from 15 parts (by weight) dry-hide glue, 10 parts glycerine and 9 parts of water. When allowed to dry, this gelatin film can be cut with a razor blade and stripped from the areas to be cemented.

The masked parts should be soaked until the surface is suitably softened. Excessive soaking times will prolong the time required for the part to set and harden. After the soak period, the two parts should be rapidly assembled and the joint held gently together for about thirty seconds before applying pressure. The part should then be fitted into a jig which will apply a uniform pressure throughout the cemented surfaces while the bond is setting. The success of a cementing job depends on a properly fitting jig which will provide a uniform pressure sufficient to squeeze all the air bubbles from the joint and to assure good contact of the surfaces to be bonded.

The pressure, however, should not be so great that the part will be flexed or stressed as crazing may result from the solvent action of the cement. Suitable jigs can often be made with pressure devices such as springs, clamps or clips. See Figure 12 for typical soak method set-up.

2. The Dip Method
The masking operation necessary in the soak method can be eliminated if one edge of the joint can be conveniently dipped into the cement. This method requires greater skill but is much quicker than the soak method. Care must be exercised to avoid spattering or dripping cement on other areas of the sheet. It is sometimes helpful to use spring clamps to hold the piece steady and in an upright position while it is being dipped. Pieces of wire are also at times useful for uniform support of the edge being dipped. After the edge has softened sufficiently for bonding, the piece should be removed from the cement and placed in a holding jig as mentioned in the technique for the soak method. See Figure 13 for typical dip method set-up.

3. The Syringe Method
In those cases where the mating surfaces are well matched, the joint may be secured in a jig and the cement introduced to the edges of the joint by means of a hypodermic syringe, eye dropper or squeeze bottle. In this manner, the cement will spread throughout the joint area by capillary action. In the event a thicker coating of cement is desired, fine wire may be inserted into the joint as it is assembled in the jig. Thus spaced, the joint is ready for the cement to be introduced into it. The syringe should always be cleaned after use to prevent adhesion of the plunger to the walls of the syringe. See Figure 14 for typical syringe method techniques.
CEMENTING (Cont.)

4. The Brush Method

If the cement is sufficiently viscous, it can be brushed on the surfaces to be joined. Viscosity of solvent or monomer type cements can be increased by dissolving acrylic chips or shavings in them. The solvent is then brushed on and allowed to soften the surface of the acrylic sufficiently for formation of a cohesive bond. The joint is then placed in a jig until hardened, as is the case in other methods.

Cemented joints should reach full hardness in 24 hours, provided the proper techniques have been used and the cementing operations have been carried out in a suitable temperature and humidity environment.

Venting

When hollow articles are cemented, enclosed areas should be vented to prevent entrapment of solvent vapors which could promote crazing of the acrylic.

Filling Voids

Before a cement sets, small crevices or voids can be filled by inserting cement with a hypodermic syringe.

Clamping

For maximum bond strength, jigs or clamps should be used to hold the joint together with uniform pressure, no greater than 6 psi (4 kg/cm²), while the cement is setting. No part of the jig or clamp should be allowed to touch the joint, for the reason that capillary action will draw the cement under the jig resulting in its being attached to the joint.

Polishing or Machining

The cemented joint should be thoroughly hardened before polishing, sanding or machining. Thermoforming should be done prior to cementing operations whenever possible. If thermoforming must be done on precemented joints, a monomer-polymer catalyst type cement should be used and the joint annealed to provide maximum bond strength during the forming operation. A close fitting "V" joint generally gives the best cemented bond for thermoforming.

Cementing Aristech Acrylics® Acrylic Sheet to Other Materials

Often it is desirable to cement parts made from Aristech Acrylics® Acrylic Sheet to other materials such as metal, wood, other plastics, etc. Industrial Poly-Chemical Service, manufacturer of Weld-On Cements, has a complete line of products for these types of jobs. Consult IPS for recommendations.

ANNEALING

When plastics parts are molded, fabricated or formed in any fashion these processes inherently induce stress into the part. Just like glass, ceramic and metals, this stress can be relieved by a process called annealing. In annealing we heat the part heating to near the glass transition temperature, maintaining this temperature for a set period of time, and then slowly cooling it to room temperature.

A part undergoing annealing should be completely supported. If it is simply a sheet it can be laid flat in the oven. More complicated parts can require jigs to ensure that the part is not distorted during the annealing process.

For acrylic, the typical temperature that it is heated to is 80°C and then cooled slowly. Generally, you heat the sheet one hour for each millimeter of thickness. It is critical that the sheet be cooled at a controlled rate. If you took the part out of the oven after it achieved 80°C and cooled it under running water you would build more stress into it rather than relieve it. Specially configured annealing ovens can program the annealing schedule. Most ovens will require that you reset the temperature at intervals. The part does not have to be cooled all the way to room temperature before removing it from the oven. It can be removed once the temperature goes below 60°C.

If the part has been cemented it must be allowed to cure at least five hours before annealing. Rapid solvent evaporation can cause bubble formation.

Thermoformable polyfilm can remain in place during annealing. Any other paper masking, tape, etc must be removed.

Annealing Schedule

<table>
<thead>
<tr>
<th>Thickness</th>
<th>Heating Time (hours)</th>
<th>Cooling Time (hours)</th>
<th>Heating Rate (degrees Celsius per hour)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0</td>
<td>2</td>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>2.5</td>
<td>2.5</td>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>3.0</td>
<td>3</td>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>3.2</td>
<td>3.2</td>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>4.5</td>
<td>4.5</td>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>6.0</td>
<td>6</td>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>9.5</td>
<td>9.5</td>
<td>2.5</td>
<td>12</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>3.5</td>
<td>11</td>
</tr>
</tbody>
</table>
THERMOFORMING

Several types of acrylic sheets are produced at Aristech Surfaces in Florence, Kentucky. The three most common thermoformable sheets are GPA (General Purpose Acrylic), Acrysteel I-GP (Impact Resistant Acrylic), and I-300 (Crosslinked Acrylic). All three products have very good thermoformability, which is one of many important and useful properties offered by Aristech Surfaces. With many products available, there is an Aristech Acrylics® Acrylic Sheet to satisfy most needs and application requirements.

GPA is ideally suited for all types of outdoor signs, skylights, and general fabrication. This weather-resistant acrylic is solvent cementable and is inventoried in many colors, thicknesses, and sizes.

IGP Impact Resistant Acrylic offers the same high performance qualities as GPA plus additional impact resistance to reduce breakage in handling, manufacture, and transportation.

I-300 is a partially cross-linked Aristech Acrylics® Acrylic Sheet with unparalleled performance for the more demanding thermoforming application requiring stain and chemical resistance. This product is most commonly used in the plumbingware and spa markets.

Good formability is one of the most important and useful properties of Aristech Acrylics® Acrylic Sheet. When Aristech Acrylics® sheet has been properly heated, it feels like a sheet of soft rubber. In this state the material can be formed to almost any desired shape. On cooling, the acrylic becomes rigid and retains the shape to which it has been formed. Forming thermoplastic sheet is probably the simplest type of plastic fabrication. The cost of molds and equipment is relatively low. Both two and three dimensional forming of Aristech Acrylics® Acrylic Sheet can be accomplished by a number of different methods. The selection will depend on the shape, thickness, tolerance and optical quality required for the formed part as well as the equipment available and number of parts to be made.

It is imperative that all of the above Aristech Acrylics® Acrylic products be heated properly for thermoforming. Using temperatures that are too low on these products will leave stresses in the formed part that could possibly be relieved by solvents in reinforcing resin, paint and decorating materials causing cracks or crazing. Too high forming temperatures can cause sheet blistering.

While continuous cast acrylic sheet is used in a wide range of thermoforming applications, the most common use is baths and spas. Following is the narrative of a tub or spa being produced:

1. An acrylic “shell” is thermoformed. Acrylic is expensive so the producer starts with a sheet that is as thin as possible while insuring good finished parts. The acrylic only forms the interior and deck "skin" of the vessel. It provides no structural support.

2. The back side is "sprayed up" with FRP (polyester and fiberglass composite) or polyurethane* to create a rigid support body. This is often supplemented with wood or plastic secondary supports that are buried in the spray up.

3. Once cured, the part is trimmed and drain and fitting holes are drilled.

4. Fittings are installed.

*Note that polyurethane spray up is usually only used on ABS backed acrylic, but can be sprayed directly to acrylic using specific chemistry.
THERMOFORMING (cont.)
Thermoforming Temperatures and Cycles

The following curves (Figures 15 & 16) were derived from tests performed at Aristech Surfaces. Due to the large variety of heating equipment available, heating times may vary. The following heating cycles should be used as a starting point only in obtaining optimum forming temperature times and cycles. The temperature and cycle times depend upon the thickness of acrylic sheet as well as the type of heating and forming equipment used.

Surface temperatures should not exceed 380 °F (194 °C). It is common practice, especially in high production operations, to allow surface temperatures to exceed 380 °F (194 °C). Higher temperatures can be tolerated up to 30 seconds depending on sheet thickness in most cases. But due to blistering potential, it is not recommended to exceed 380 °F (194 °C).

Several other methods can be used to determine if a sheet has been sufficiently heated. The most common is the ripple method by which the operator shakes the heated sheet with a non-combustible object (See note). When the sheet ripples uniformly across the surface, it is ready for forming. Another commonly used technique is the “sag method”. By trial and error the amount of sag in a hot sheet can be correlated with the optimum time to be thermoformed. The best procedure for determining when the sheet is ready for forming is to accurately control the temperature by the use of heat sensors and/or temperature indicating stickers. The actual cycle, temperature settings and techniques most suitable for a particular forming job are best determined on one’s own equipment.

Note: Care must be taken to make sure the operator does not endanger him/herself due to exposure to electricity, hot oven components, or hot sheet.

FIGURE 15 - Forced Air Circulating Oven at 350 °F (177 °C)

FIGURE 16 - Electric Infra-Red Radiant Heating
Heating Equipment

1. Forced Air Circulating Ovens

Forced air circulating ovens generally provide uniform heating at a constant temperature with the least danger of overheating the acrylic sheet. Electric fans should be used to circulate the hot air across the sheeting at velocities of approximately 150 ft./minute (46 m/minute). Suitable baffles should be used to distribute the heat evenly throughout the oven. Heating may be done with gas or electricity. Gas ovens require heat exchangers to prevent the accumulation of soot from the flue gas. Electric ovens can be heated with a series of 1000-watt strip heating elements. An oven with a capacity of 360 ft³ (10 m³), for example, will require approximately 25,000 watts of input. About one-half of this input is required to overcome heating losses through the insulation, leaks and door usage. An oven insulation at least two inches thick is suggested. Oven doors should be narrow to minimize heat loss, but at least one door should be large enough to permit reheating of formed parts which may require reforming. The oven should have automatic controls so that any desired temperature in the range of 250 to 450 °F (121 to 232 °C) can be closely maintained. In addition, temperature recording devices are desirable, but not essential. Uniform heating is best provided when the sheet is hung vertically. This can be accomplished by hanging the sheets of acrylic on overhead racks designed to roll along a monorail mounted in the oven roof or in a portable unit. Precautions should be taken so that the sheet cannot fold or come in contact with another. A series of spring clips or a spring channel can be used for securely grasping the sheet along its entire length.

2. Infra-Red Heating

Infra-red radiation can heat Aristech Acrylics® Acrylic Sheet three to ten times faster than forced-air heating. This type of heating is often used with automatic forming machines where a minimum cycle time is important. Temperature control, however, is much more critical and uniform heating is more difficult to obtain by this method. Acrylic plastic absorbs most of the infra-red energy on the exposed surface, which can rapidly attain temperatures of over 360 °F (182 °C). The center of the sheet is heated by a slower conduction of heat from the hot surface. This usually causes temperature gradients across the thickness. The gradient is more severe with infra-red heating from one side only. (See Figure 17). Infra-red radiant heat is usually supplied with reflector backed tubular metal elements, resistance wire coils or a bank of infra-red lamps.

More uniform heat distribution can sometimes be accomplished by mounting a fine wire-mesh screen between the sheet and the heat source. A Temperature Controlled technology, such as a solid state PLC or percentage timer on older apparatus should always be used for consistent results. Top infra-red heaters should be approximately 12" (30 cm) from the sheet. Bottom heaters can be 18 to 20" (45 to 50 cm) away.

TYPES of Infra-Red Heating

A. **Gas**: Can be open flame (less common) or gas catalytic. Economical to run but poor control of the heat, impossible to control the heat profile.

B. **Calrod**: Electrical resistance elements such as the type used in domestic ovens. It is a nichrome wire surrounded by an silicon or mica insulator.
Three-Dimensional Forming

Techniques for three-dimensional forming of plastic generally require vacuum, air pressure, mechanical assists or combinations of all three to manipulate the heated sheet into the desired shape. The basic forming techniques used for Aristech Acrylics® Acrylic Sheet are illustrated in the following drawings and described below.

1. Vacuum Forming

A. Heated sheet in clamp frame.
B. Mold is mechanically positioned to heated sheet, forming a seal. Vacuum is then applied to form part.

2. Drape/Vacuum Forming

A. Heated sheet in clamp frame.
B. The mold is forced into the sheet to a depth that forms a seal around the periphery. Vacuum is then applied to form the part.

3. Vacuum/Snap-Back Forming

A. Heated sheet in clamp frame.
B. Position vacuum chamber to heated sheet to form seal. Apply vacuum to form bubble to predetermined height.
C. Insert mold into heated/prestretched sheet to form seal. Air control relieves vacuum in preform vacuum chamber. Apply vacuum to mold to form part.
4. Pressure Bubble/Snap-Back Forming

A. Heated sheet in clamping frame.
B. Position pressure chamber into heated sheet to form seal. Apply pressure to prestretched sheet to controlled height.
C. Insert mold into prestretched bubble at a controlled rate. Insert to depth required to form a seal.

5. Plug Assist—Vacuum Forming

A. Heated sheet in clamping frame.
B. Position mold into heated sheet to form seal. Insert heated plug at controlled rate to the depth required for preforming.
C. Apply vacuum to form part.

6. Pressure Bubble/Plug Assist/Vacuum Forming

A. Heated sheet in clamping frame.
B. Position mold into heated sheet to form pressure seal. Apply pressure to prestretch sheet to controlled height.
C. Insert heated plug into bubble at a controlled rate to the depth required for preforming.
D. Apply vacuum to form part.
MOLDS

WOOD—Wooden molds are easily fabricated, inexpensive and can be altered readily. Wood molds are ideal for short production runs where mold markoff is not important and for prototyping.

EPOXY—Epoxy molds yield the least amount of mold markoff of any of the mold materials used. Epoxy molds can be used for medium production runs and have good durability provided they are properly fabricated.

Thermoforming Troubleshooting Guide

<table>
<thead>
<tr>
<th>Problem</th>
<th>Probable Cause</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blistering</td>
<td>Sheet too hot.</td>
<td>Reduce time heater or reduce voltage. Move heater farther away. Use screening if localized.</td>
</tr>
<tr>
<td>Poor definition of detail. Incomplete forming.</td>
<td>Sheet too cold.</td>
<td>Increase heat input to sheet.</td>
</tr>
<tr>
<td></td>
<td>Low vacuum.</td>
<td>Check for leaks in vacuum system. Increase number and/or size of vacuum holes. Add vacuum capacity.</td>
</tr>
<tr>
<td></td>
<td>Sheet too thick.</td>
<td>Use thinner caliper sheet.</td>
</tr>
<tr>
<td></td>
<td>Low air pressure.</td>
<td>Increase volume and/or pressure.</td>
</tr>
<tr>
<td>Excessive thinning at bottom of draw or corners.</td>
<td>Poor technique.</td>
<td>Change forming cycle to include billoining or plug assist. Use screening to control temperature profile.</td>
</tr>
<tr>
<td></td>
<td>Sheet too thin.</td>
<td>Use thicker sheet.</td>
</tr>
<tr>
<td></td>
<td>Drawdown too fast.</td>
<td>Decrease rate of drawdown.</td>
</tr>
<tr>
<td></td>
<td>Mold too cold.</td>
<td>Change heaters to provide higher uniform mold surface temperature. Check cooling system for scale or plugs.</td>
</tr>
<tr>
<td></td>
<td>Sheet slipping.</td>
<td>Adjust clamping frame to provide uniform pressures.</td>
</tr>
<tr>
<td></td>
<td>Stray air currents.</td>
<td>Provide protection to eliminate drafts.</td>
</tr>
<tr>
<td>Excessive sag.</td>
<td>Sheet too hot.</td>
<td>Reduce time or temperature.</td>
</tr>
<tr>
<td>Pits or pimples.</td>
<td>Vacuum holes too large.</td>
<td>Use smaller holes.</td>
</tr>
<tr>
<td></td>
<td>Vacuum rate too high.</td>
<td>Increase vacuum rate or level.</td>
</tr>
<tr>
<td></td>
<td>Dirt on mold or sheet.</td>
<td>Clean mold and/or sheet.</td>
</tr>
<tr>
<td>Part sticking to mold.</td>
<td>Rough mold surface.</td>
<td>Polish mold.</td>
</tr>
<tr>
<td></td>
<td>Undercuts too deep.</td>
<td>Reduce undercuts. Change to split mold. Increase draft of mold.</td>
</tr>
<tr>
<td></td>
<td>Not enough draft.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Clean mold.</td>
<td>Clean vacuum forming area. Isolate area if necessary and supply filtered air.</td>
</tr>
<tr>
<td></td>
<td>Clean mold.</td>
<td>Reduce heat and heat more slowly.</td>
</tr>
<tr>
<td></td>
<td>Dirt in atmosphere.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sheet too hot.</td>
<td></td>
</tr>
<tr>
<td>Distortion in finished part.</td>
<td>Part removed too hot.</td>
<td>Increase cooling time before removing part. Check cooling system. Check temperature profile. Correct mold design — stiffen to eliminate.</td>
</tr>
<tr>
<td></td>
<td>Uneven heating.</td>
<td></td>
</tr>
</tbody>
</table>
THERMOFORMING WITH POLYETHYLENE FILM

Temporary Polyethylene Film Barrier

Polyethylene film (polyfilm) is used as a temporary protective film on the top surface of the Aristech Acrylics cast acrylic sheet. Some processors may choose to leave the polyfilm on the acrylic surface during thermoforming. Aristech Surfaces does not recommend or oppose the use of this procedure, however some manufacturers use this procedure very successfully. Leaving the film on during thermoforming can cause problems if not done properly. For example; if the acrylic surface is overheated, the film may bond so tight that it is virtually impossible to remove it. Also, film left on a finished part will gradually bond tighter and tighter as time goes by. Film left on for more than one (1) year probably cannot be removed.

It is recommended that if the sheets have been sitting unwrapped or exposed for an extended period of time, to remove the polyfilm masking prior to forming. Since the protective film can absorb moisture, it could possibly transmit the moisture to the sheet when heating and cause blisters in the finished part.

Damage to the film may make it desirable to remove the film prior to thermoforming. Rough handling may scratch, tear or partially remove the film. Forming with the film damaged may leave unwanted marks on the acrylic surface. Once the film is removed from the sheet, it cannot be laid back on the surface. Air or other contaminates can become trapped under the film and cause markoff on the finished product.

For cautions and other information relating to handling of an exposure to this product, please see the applicable material safety data sheet published by Aristech Surfaces LLC.

These instructions are based upon experience with Aristech Surfaces products only. Experience with products of other manufacturers is specifically disclaimed. For most uses, check for local code approval and test for application suitability. These procedures, techniques and suggested materials should only be used by personnel who are properly trained in the safe handling of the chemicals and the equipment with which they are working. Avoid aromatic solvents, clean with mild soap and water, avoid abrasives. These suggestions are based on information believed to be reliable, however, Aristech Surfaces makes no warranty, guarantee, or representation and assumes no obligations or liability as to the absolute correctness or sufficiency of any of the foregoing, or that additional or other measures may not be required under particular conditions or circumstances.